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I. Introdttction

A htrge number of control systems are characterized by continuous-time dynamic

equations. Also many theories and practical methods have been developed for

continuous-time models. However, it is well-known that since the digital cornputers

and digital processors are not only greatly advanced in technology, but also possess

many advantages such as improved sensitivity, betler reliability, no drift, less effect

due to noise as well as disturbance, lower cost, etc., so it is often desirable to retit

these systems with digital transducers and digital controllers. In order to match

the states of the equivalent discrete-time system to those of the continuous-time

system as closely as possible, the sampling period must bc sufficiently small. Unfor-

tunately, Ihe resulting discrete-time system may be unstable even if the original

continuous-time system is stable. Thus, we apply the so-called digital redesign

technique ( 1 3) to arrive at an approximated digital system which closely matches

the response of the continuous-tinae system with the same inputs and initial con-

ditions, rather than designing a new sytsem using digital control theory.

In this paper, wc extend the model conversion and digital redesign problems to

singular systems, also called descriplor systems, characterized by
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E,X(t) = A,x(t) + B,u(t), (I)

where .v(t)e R", u(t)e R". and E, is a singular matrix. The constant matrices E,,

A,, as well as B,, all havc appropriate diinensions. It is known that singular systems
are of practical importance since they appear in many areas such as electrical

networks, singularly perturbed systems, composite systems, Leontieff models in

multisector economy, Leslie population models in biology, etc. (4).

It should be noted that we assume the pencil (sE,-A,) to be regular, i.e.

det (sE, ,4,) # 0 and that the singular system has a unique solution if the singular

system considered in ( 1) is controllable at finite and impulsive modes in the sense

of Cobb (5).

De/initioH I (5)

The singular system is referred to as controllable at finite modes iffrank

[sE,-A,, B,] = n, lk_r all iinite .s_ ('.

Definition 2 (5)

If rank [E,, B,] n, then the singular system is referred to as controllable at

impulsive modes.
It is also noted that even if rank [E,., B,] # n, there may still exist a dynamic

feedback control law such that impulsive modes can be moved to linite locations.

In addition, if rank (E,) deg f_det (sE,.-A,.) I & q, where rank (E,I & .6' is called

the generalized order of the singular system, and deg '_det (sE,- A,) I _ k is said to

bc the order of the slow subsystem, then the singular system has q impulsive modes,

which occur in the fast subsystem and are created by either inconsistent initial
conditions or discontinuous control input (6 7).

Cobb (8) and Tsai e; a/. (9) used preliminary linear feedback controllers to make

the singular system (I) causal (i.e. to remove impulsivc modes from the system

response by moving the associated poles from intinity to some finite locations).

Tsai's work is more comparable to the elegant and technical paper proposed by

Cobb (8), because Cobb's approach needs to solve complex and difficult eigen-

value-eigenvector problems, in particular, when the singular system has a large

order and is in the deflective Jordan form. Also, it is not easy to determine a

preliminary feeback control law such that the impulsive modes can be moved

to linite locations. Although sometimes Tsai's method requires solution of the

eigenvector problem, it is not complicated lbr processing a low-order submatrix

with all zero eigenvalues.
In this paper, we first transform the singular system with a regular pencil (10)

into a standard one (11) by, using a block modal matrix, constructed via the fast

and numerically stable algorithms of the extended matrix sign function (12 13).

Thus, the singular system can be decomposed into a slow subsystem with tinite

modes, and a fast subsystem with infinite modes which include impulsive modes

and nondynamic infinite modes. If the singular system has no impulsive modes,

then the slow subsystem is in a form era reduced-order regular system and the fast

subsystem is in a nondynamic system in which the l_st states only depend on the

input. On the contrary, if the singular system has any impulsive modes, then we

Jt)tllll,ll el the } r_lnklil_ IllslilLIlC
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use the preliminary feedback control law to eliminate it. and repeat the above

procedure so that the singular system can be decomposed into a reduced-order

regular system and a nondynamic equation. As a result, we can apply the given

results (2, 14) with respect to model conversion :md digital redesign to the reduced-

order regular system. Finall), the results obtained can bc lranslkmllcd back to

those of tile original coordhlatc system by using simihu'it.v transformations and

sinlplc substitutions.

ll. Prelimiuaries

(i) hm'm/mlhm m lhu maFix s@n /imuHon

The matrix sign function o1" a sqLlarc matt+ix A _( ...... with Ro(_-(A))# 0 is

ctcllncd by (I-_)

sign(A) = 2sign _ (A) I,,, 12)

_ hclc/,, is an H x, identity matrix and

1

_, (;.1,,--A)/d)o. (J)sign ' (,4) 2s_i

u, is a simpl0 closed contour m right-hall" piallO ol'X and encloses all the righl-hall'-

phmc cigcnvahics of :|. On tile other hand, the matrix sign function (12, 16) is also

defined as

sign (,4) - .41\"A -_) _ - A _(x,A-_), (4)

v, hcrc thc matrix \,A -"denotes tile principal squqlC root of <4:. Two fast and stable

algorithms (12 13) with r(_3)th-order convergence rates locompulc the malrix

sign l'unctiovl arc listed below.

For r = 2, one has

O(/,-+ l) = Q(I<)I2/,,I[L, + O_(k)] i, Q(0) = .,1. lira Q(k) sign(A) (5)

Or

C)(/,+ i)= ![Q '(/,)+Q(/,-)],

Note that Q(/,) Q _(k).

l:or r = 3. one has

Q(k+ i) = QCI,-)[3/,,+Q_il,-)}[/,,+3Q_(k)]

Q(0t = .4, lira Q(k) = sign(A). (6)
A ,x

' Q(0) .... l, lira Q(k) = sign (A).
], , t

(7)

Some fast and numerically slablc algorithms with r _ 4 can be found ill Shieh et

a/. (12) and Tsai eta/. (13).

One nlai ri I'caluro of ! he nlalri x sign l'nnciicm is that it prescrx'cs the eigenveclors

o[" the original nlall'ix. This plo['lCl't) is uscl'ul for sluciying tile eigcnstli]CttlleS of

malriccs, as well as Ik)r dcvelol'ling applications for engineering problems. A singuh.u

lllalrix ,4 can be modified tlsillg the bilincar trallsl\-nmalion,

\ol 1_0. Nt f_. pp ]1)6_ I{}a(_, IklLll
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.4 = (A-pl,)(A+pl,,) ' (8)

where/> is the radius of a circle with center at the origin such that the circle contains

only those zero eigenvalues, and no eigenvalue of A is located on the circle.

Therefore, the eigenvalues within the circle will be mapped into the left-half plane

of the complex s-plane, and those outside the circle will be mapped into the right-

half plane of the complex s-plane. Thus, the proposed algorithms in (5) (7) can be

applied for obtaining the sign (..4"). Note that the bitincar transformation preserves

the eigenvectors of the original system.

(ii) lntrmhwtion to the re:luhlr pencil and the stamlard one

De[inition 3 (10)
Let E, and A, be two square constant matrices. If dot (sE, A,) 4: 0. for tilt s.

then (sE,- A,) is called a regular pencil.

D(Jinition 4 ( 11 )
t.et (sE,,-A,,) be a regular pencil. If there exist scalars _ and fl such that

_E,,+[L4,, = 1,. then (sE,,--A,,) is called a standard pencil.
Note that for any regular linear system (with E, = L,), the regular pencil becomes

a standard pencil by taking .z_= I and [I = 0. Furthermore. any regular pencil,

(sE,-.4,). can be easily transformed into a standard one by premultiplying

(:<E,+flA,) _ to E, and A,, respectively, where :_ and [/ are scalars such that

det (_E, + [I.4,) _ O. Hence, the matrix coetticients of a standard pencil, (sE,,-,4,).
become

E,, _ (_I;,+/_A,) LE, (9)

A,,_ (:_E,+fiA,) tA,. (10)

The modified system retains its state vector x(/) and the matrices E,, and A,, have

the lk_llowing properties.

Lemma 1 (4)

(LI) E,,A,, = A,E,, that is, E, and A, commute.

(1_.2) E,, and A,, have the same cigenspaces.

The above properties enable us to decompose a singular system into a reduced-

order regular subsystem and a nondynamic subsystem. The detailed derivation is
shown in the next section.

HI. The Optimal Regional-poh,-placement Design Method for Singular Systems (9)

Consider a lincar continuous-time singular system, which is controllable tit finite

and impulsive modes, characterized by' (1). It is known that the singular system

can be decomposed into a slow and a fast subsystem. As we have discussed in

Section 11. the regular pencil (sE,-A,) can easily be transformed into a standard

one. say (.rE, ,4,,I. Note that since E is a singt, lar matrix, which has at least one

]otlr[lkLI {,1 /ht' I Iktilk]ltl Itl_titulc
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zero eigenvaluc, [7can not equal zero. Hence. we have

(xE,+fiA,) _E,.f(t) = (_E, +[L4,) _A,x(t)+(:(E, +/L4,) t &u(0

E,,.f(I) = .4,x(t) + B,,u(t). (1 1)

whereE,,=(7.E,+[IA,) tE,.A,,=(7.E,+[L4,) _A, andB,, (TE,+/L._I,) _B,.Due

to _E,, + [L4,, = 1,,, so the pencil (.rE,, A,,) is a standard one which has the properties
mentioned in Lenlnla I.

Now, let

x(t) = MX(t), (I 2)

where the constarit matrix M is a block modal niatrix of f,, arid determined by

means of the extended matrix sign function shown below.

Step I. Find sign (/72,,iusing the extended matrix sign function with an adequate

p, where

E,, = (E,, pI, A(E,,+pl,,)

Step 2. Find sign' (L,) - _[L,+sign (/?.,,)] and sign (/_.,,) = _[L, sign (L,)].

.S't_7;3. ('onstruct M [ind (sign (I'_,,))ind (sign (I'_,,))], wlaere ind (-) represents

the collection of the linearly independent column vectors of (').

Substituting (1 2) back to (IlL and multiplying M _on the left of the equality,
one has

,_..I IE,,M.f(t) =M IA,,M.f(t)+M IB,y(/)

+

0
O_1 .v(t)
E:

= M
1

(1,, _E,,)M.f(t)+M _B,,u(t)

1
(I, - _/_,) I O

+

I
I ]X(t)+ _ u(t), (13)

2

where .f(t)= [.f',(t),Xi(t)]'. M 'E,,M = block diagonal {El,E:}. El is invertiblc

with rank (P_) = dog {det (sE,-,4,.)} g k. E, is a nilpotcnt matrix with dimension
(n-k)x(n-k), arid [B't,B_]'=M _B,,. Notice that since det(/,, k ,_E2) = 1.

it is invcrtiblc. Simplifying (13) by premultiplying the block diagonal

IE_ L,[I(I,, _ 7E2) t} on both sides of the equality, oncobtains

Vo[ 33tl, No 6, pp. I063 10,k6. Ig93
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1_ I 0
+

o I /_(1. _-_£.)

+ .v(t) =
0 I E,

_

fl(E, ' _1_) [

+

o I

+ Ilk(l,,

,o]+ 2(0+

I 1,,_

0

2(0

1,, /,

L 'B, 1 u(t)

(14)

where E,=fl(L, ,-_E2)'E2, ,4_=l/fl(E, I-_IA), /1_=£, '/_l and /_,=
fl(L, _-'_E:) 'B,. It is remarkable to note that since

rank (E,) deg [det (sE,-A,){ = rank (Ej), (15)

it is much easier to determine the number of the impulsive mode using the above

equation relating to (14).

In order to avoid the complexity of statement, we discuss only those kind of
singular systems which include at least one impulsive mode. First. assume that the

singular system (14) has q impulsive modes, then rank(E_)= q. it should be
emphasized that since the nilpotent matrix E,, in general, is not in the Jordan block

form, it is necessary to solve the eigenvector problem (17 18) for E,. The following

proposed method is more convenient for tinding the preliminary feedback gain K,
and to prove that K, can eliminate the impulsive modes.

Let

£(t) = l":(_(t), (16)

where 2(0 = [#,(t),._,(t)']' = [._",(t), (U '£_ (t))']', and

[, :]V= + .

o I

U is a modal matrix of Er with dimension (n k) x (n k) such that U

the Jordan block form. Substituting (16) into (14) and premultiplying it by I/
we obtain

i, ol oI+ ._(t) = + 2(0 +

o I [:, o I L,_ _,

'/7'.,U is in

u(t), (17)

where F_,= U '/7'.,U, .,{, = .4,. /_, = /t_ and /_,-= U k/_,. Notice that E, is in the

1068 lournal ot lhc I lanklm Institute
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Jordan block form vcilh U blocks of sixes if1. t/_,..... if,i, '_'VIICI'C _i i I /"'f' = COI(.IIIII]

(rmv) number of l_',. Taking the Laplace transformation of the last subsystem

/_'_x, (,') - .__(t) +/_u(t) in (17), one obtains

._',(._)= (._£", L, _) '(k,.(,(O)+L_,_._(s))
I ]

i {I

_._,hcrc ,f'l (s) and _r:(s) dcnotc the Laplace transformations of.f_(t) and u(t), rcspcc-

lJvc}), .f)(0) dc_3olcs Ihc JnJlJa] vlJluc oJ'.f_(D, :.rod ] J.s said Io be lhc nJll>Olcncy JJ]dcx

of 1['_. Taking the invcr,_c Laplace mmsl'ormation of the above cqualion, wc have

the v,,cll-known rcsult (7)

/ ] / I

.c,.,(_i- - y_.l]",.i-_(o)a" "(t) 3- [:lD,.'"(t). (19i
I i fl

where 6(t) and 6<'It) denote tile delta I'tlnction ;.ind tile ith derivative of the delta

function, respcctix, cly. Apparently,, it shows that the impulsive modes of the hisl

state result from inconsistent initial conditions of the l'_.lst sll.llc or discontinuous

control inpu[ (or its dcrivativcs}.

Here, wc propose a prclimiriary feedback design metllod to eliniinate the inlpul-

six, c modes, whictl is simpler lhilll ('obb's t8). The melhod l'or dclcrmJ.qJl]g lhc

preliminary feedback gain K_ = [kt,L: ..... k,, x] ..... <,, a>, where/"i is of dimcnsion

m x I for/= 1,2 ..... (n k), is summarized as lk)llows.

_< d, and its corresponding Jordan block is a null matrix,1. ll'p.. _> 1, v,hcrc I _<

then

1"/i I { t_> I1¢, i ] _ O#jl • ]

_"1'u,_ -i,, r 2 ----- Ore. I

Ore, I]_il I , It, I p,

2. If lfi > I, where I _<

matrix, then

kJ_ i " P ' '

<_ d, and its corresponding Jo,-dan block is not a null

,5(/71,,,. _.... i,._' )

<'_(t7,,,,_,,,++,,,>:)
tfl i'l _

($ (t7(i, ,+, ...... i,,),,,)

P, l" • _ Os## " I

z Om , I

VI>I _t(L N_/ f_. pp 10f13 1l}_6. 19cJl

I'riiltcd hi (ir¢iit ltrilain 1069



Jason Sheng-Horng Tsai et al.

where

A
f =

]_k - 2

fi,,

t;, _ [fi,, fi,__

In k)_. m

t 0 if /J,_=O
_3(/_,,)_ 1 if /_,/>0 j= 1,2.

-I if /_, < 0

• _ Ill.

Let

u(t) = -- Kr.?r(t) + v(t)

= -- [0,,,, _, Kf]2(t) + v(t).

Substituting (20) back to (I 7) yields

E_/c(t) = A_.;c(t) + BEy(t),

where

E_ = + , A_ = + , B_ = .

(20)

(21)

Lcmllla 2

The singular system in (21) has the original k finite modes and another

q(= rank (E.) = rank (Er)) finite modes that were induced by applying a linear

preliminary feedback control law u(t) in (20) to the system in (17). All these

finite modes are guaranteed to be controllable.

Here, we have to emphasize that with Cobb's method for determining the

prelirninary feedback control in (20), we may need to find an invertible matrix and

execute the operations of elementary row and column interchange. Our method,

however, is very easy and efficient requiring no computation.

Now, we want to decompose the singular system into a reduced-order regular

system with k+q controllable finite modes and a nondynamic equation with

n--k-q infinite nondynamic ones. It can be accomplished by using previously
outlined steps once again. First, we transform lhe regular form into a standard one

by premultiplying (21) by (TEt +qAD _, where 7 and _1are arbitrary scalars such

that (TE_ +qAD is invertiblc. Therefore, we obtain

(;'E_+qA_) _Et.(_(t)=(TE_+qAk) _Ak.('(t)+(,'E_+qA_) _B_c(t). (22)

Let

.co(t) = ffI2(t), (23)

where the constant matrix ffl is determined using the extended matrix sign function.

Journal <fllhe franklin IrlMilute1070 I,,._g....... I,_._L_,_
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The procedure is fl3c same as in the previous iflusmition for finding M', except that

it operates on (;,k.'_ +q..4;,) ]1£_. Substituting (23)into (22). and prcmultiplying it

by 31 i onegcts

_Cl _(;'G+qA_,)_Ej:Q._(/)

-:O _(','Ej,+tlA_) _A_,:O.,7(/)+AI I(,'G+_l,4k)_B_t'(t)

:==>

O

0

I
= ]_ I [I,,-,'C'E_+q4j,)

I1

1
[I,,-','_('1 I(;'E_ +_IAI,)

'° 1+ -_(0

q

+

0 I

+ .,_(t)

I
(I_ ,,j ;,F.',_ )

q

0

EE_]A/._(t)+,'Q _(TE_+qA_) 'B_r(t)

_E, ,..£q._(t)+£t

I 0

I

I1

[ 0

+

I
1 I,, ,v ,_

q

1(TE_+qAa) 'Bar(t)

IB'" l.t(t) + r(t)
/_1/,

r(t). (24)

where S:(t} = [.¢:',(t), .?l(t)]', _Q _(;,E_ +_lAk) t k a ,_Cl= block diagonal _E_./_,_ : =

block diagonal _E_,, O,,, _, ,hi. Ev, is inxcrtiblc with rank (/_,_)=deg _,dct

(s& ,*l,v)'. = (q+k). /2,, isa null matrix with dimension (n--k-q) x(n k-q),

rind [B',/,. Bf_,]' - _,0 i{._,/_ +ll/ta ) _B_,.

! V. Model Conversion

It is ch,_u" ro see that the above equation in (24) can be dccomposcd into a

rcdt, ccd-ordcr regular system and a nondynamic equation as follows :

1
x,(/) = (E_a_--?l_,,,).t,(t)+F,,,'B,,v(l) _ ,4v._:,(l)+P,_,r(tl (25)

q

t,(/) - _IB, U'(I). (26)

\o[ ]I0, Nu 6, pp 106t [H_6, I_l_Jl
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If r(/) is a piecewise-constant input, i.e. r(t) = r(kT) lbr kT<_ t < kT+ T, where

T is a sampling period, then we have the discrete-time system corresponding to
(25) and (261 in the following:

.f,,jk T+ T) = (7,.;q,(k T) +/_j(k T)

2br(k T) = ltlr(k T),

(27)

(28)

where G, = exp (,4,, Y). fi_ = (C, l,j_ i, ),4,_ ' #,/, and fir - tlfl, t.

In general, the matrices (_, and/t, can be determined exactly using the eigenval ue

eigenvector approach (19). However, approximations are required for obtaining
(7, and /), matrices when matrix ,4,_, is singular. There are many methods (19)

a_ailable to evaluate approximately (_', and /I,; especially, using Pade's approxi-

mation method (19-20), which is more popular. Some of the approximations
obtained using the Pade's approximation method are listed below:

and

G, _ tL,, _- _,4,,,T_ '(L,,,, + _ ,4,_T) _=0,, (29)

[I,,_-_/7,,T+,_(A_kT):] '[I,_,+ _,,I,kT+,_(A,kT): ] _ G_ (30)

/t, _ T(/_,+,_-_,,4,,_T) '/_,,_ z_ R_3 (31)

T[L,,_ -- _,4,_T+ ,_(._I,, T) _1 '1_,_ & R,_. (32)

Combining (27) with

1,_ I 0
+

(28) yields

] 1
.%,(k T+ T)

(7, I o
= +

O I I,, ,t
l+

.fj..(k T) l_r
r(k T). (33)

We transform (33) back to that of the appropriate discrete-time system coordinate.

which is corresponding to the ease of the continuous-time system E,.ib(t) =

(A,- B, Kr,).v,_(t) + B,r(t) where 1<1,- [0,,, _, Kt](MV) i as follows:

= (m _':'0 )

r

+ (MI"_,,I) _.,Q(kT+ T)
I

c;, I o

+ ] (MV,.(I) '.v,t(kT)+(MI/:(l)0 I 1,, ,t *
r(kT).

(34)

]072 Iourrla] ,,f tl_¢ I tanklm In,mt,_c
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V. Digital Redesign

('onsidcr the slow subsystcn3 and the fast subsystcnl described by (25) and (26),

respectively. Also, let the optimal control law obtained by using the method of

Shich eta/. (21) for the slow subs?stem be

r(t) K,_._jt) + E,j'(t). (35)

Thus the closed-loop system becomes

.v,(/) (,']',t, /'_ K _)._J l ) +/t,_ EJ(t) (36)

._:_(I) q/_ K,,.'_,(I) JlB_I'5_,I'(I) (37)

and its eigen'_alucs arc located on or _ithin the hatched region o1" Fig. I.

Assuming r(t) = r(kT') lk+r kT<_ t < kT+ T, wc have the respective discrete-

time models of (36)and (37) as 12fllows :

.£<_jk7+ 7) G,.q<_,(kT)+H,r(kT) (3S)

.£<ti(k 73 = q[ll_, K_,.'_,l,(k T) -- ;lfllx l:_,r(k T), (39)

v&ero G, = oxp ((,'4,_-B,_&.,)T), H, = (G_ l,_.x)(,4_, /_K<_) I/_E<_. Its eigcn-

vahles are located on or within the laatchcd region of Fig. 2.

Suppose a digital model which approximates the slow subsysten3 in (25) is

rcprescntcd by

.{,_(t) - ,4,_,.,_,_(t)+/_,_,;(k T). (40)

Thcn the cquivalcnt discrctc-limc model can be written as

-¢,1(/':7"+ "/') - (_,1.'_,1(k T) +/tj'(k T). (41)

, *x Im

_ 0 Re

_-- 0.707 ,

I:](_. I. Region of inlcrcst m the continuous-lime ,s-plane. x Open-loop poles bclbrc design.

C) ('loscd-loop polcs after design.

'Vol _.(I. No 6 pp 1(163 II)_,. lU'*_
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1.5

0.5

-0.5

-1

×

\\\\,

i _. \

/ :
',, , ii_/ /5(I,o)

* I

J
I

d

-1.5 ' ' '
-1.5 -1 -0.5 0 0.5 1 L.5

Fl(;. 2. Region of interest in the c-plane, x Poles before design. O Poles after design.

where (7,, = exp (..]',a T)./t,t = ((7,,- l,,_,).4,a L/},a. Let the digital control law for the

discrcte-timc model in (41) be

t'(k T) = k\__%(k T) + E,,r(k T). (42)

Then we ha_c the designed closed-loop subsystem as

2a(k 7"+ T) = ((7/d - lqdKa)2,,(k 7/') + HdEdr(h - f). (43)

To match .¢:,_(kT) "_ .¢:d(kT) with a sutticiently small sampling period T and the

same inputs, as well as the initial conditions, the explicit feedback gain K,_ and

I\-_rward gain E_I have already been solved by Tsai cta/. (2) as t\)llm_.s.

First, G, can be approximated by using the Pade's approximation method as

(44)

Next, based on the fact that

(A+BCD) i =A i A IB((." I+DA IB) IDA I (45)

we can lind the important results from the t\_llowing derivations

.Iourlla] t)) the } ranklm Instittltc

1074 J'_,,_.........I',,.,, l.,d
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and

Hence

Mode/Com'er.won cmd l)[qitcd Rcdc.__dn

[4._ _(,_,-&_KaT] '[L,_,,+{c;i,,, _,,&,)T]

[(1,,., _,$,_T)+ff,,aT_L,,K_.,] '[I,,,+,+_(,4,, l},/,A',,)7]

[(I,,._, .... _,7,/,T) ' (l,,+_ _/t,k7)'B,,T[21,,,+K_jI,,,,,

+K.,(L,,--_.,L,T) '&T] '&,(L,.,-_.._,,T)'(4._+_._,,T)

- [(l,/{a - _,'_,, T) '/},j, TK_,+ _(1,,._ -- _,7_k7) '/},, T[21,,,

+&._(L,,,,-_,_i,_.T) '&,,T] '&41,,+, _._,,T)'#,,,T,L.,

C,_, fld(2L,,+K,,,fld) 'K_,C,,,--_fldK,,+_fld(21,,,+K,,fld) 'K_,fldK_,

d,,-#,, [!_L,_+ _K_,,Fz,,)'K_,(L,+,,+cn,)]

0,, fidKd (46)

H, = (O,-L,+_,)(A',_ -/7,_, &,)

-/?dr,, (47)

K, = _(L,,+_K_,fl,_) '&_(/,,,_, +(},,) (48)

E,, = (I,,,+_K_.,/f,,) _E_,. (49)

|:inally, the state feedback control law u(/, T) can be dcrivcd through somc adequate

coordinate transformation and the ncccssary dcfinition,

r. ,I -rll [. dlkV>][._,,(kT)] ,, ,,,,, Ls,U,f)J _ "" '':_.v,,(/,73 _ M L-f(k T) j L.¢,(RT) j

MI.',.._[-"_d'(/"T)JL.:d,(kT) =x(kT). (q))

By the above definitions, one gets

u(t) = K,.,_,(t)+r(t)

= -[o,,,._. Krl L,:.(t)j+r(n

= [0,,,,_, K,](MI') 'x(t)+r(t)

Kpx(t) + c(t) (51)
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,(t)
= (A, - B, Kp)xd(t)

+B,v(kT)

_(t)

Ft(.;. 3. Digital redesign system.

a lid

where

r(k T) = Kd._d(k T) + Ejr(k T)

[-'7:d(k T) ]
= - [Kd, 0 ....... ' _)] L.?,(k T) J + Edr(k T)

= [Kd, O .... _,, ,i j.,](,tll',(.t) _xd(kT)+Edr(kT)

:_ Kx,L(kl')+Ej(kT). (52)

Kp = [O,,,_k,K,](MV) ', K= [Kd, 0,,, ,,, ,, _,](MI.',.(1)

The rcdesigned digital systcm is shown in Fig. 3. It is noted that when the discrete-
time state .v,_(k7/') is not accessible, the ideal state reconstructor methods (22 2,3)

can be applied to reconstruct the exact discrete-time state xd(k T) using the input
data and fast-rate output data of the original continuous-time system _vithot, t

establishing an observer.

VI. Illustration Examph,

Consider a linear continuous-time singular ssstem described in (I) with

El

1 2 I I 3 -2

0 "_ "_ 1 3 -3

1 2 t I 3 -2

1 2 1 3 5 -4

0 2 1 I "_ .--"_

I 0 0 0 I 0

[, o ,, o o o'IA,=I,,. BI = (} 0 I I 0 '

Since 0E, + ,4, - A, = I,,, by definition of the standard ibrm. {E,. A, 1 is in the

standard form. In other words, if wc lake :_ = 0 and fi = 1, then E,, = E,.. A,, = A,

and B,, = B,.. Because/% is singular, i.e. E,, includes some/ero eigenvalues, utilizing
the bilincar transl\wm lo lind the similarity transformation matrix -_t ot" E,, is

Joulmd ol the I Iktllk]lll Inntittzi_'
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necessary. Taking p 0.5 and using the algorithm doscribod in Sociion II1, onc
l'ias

E= (E,,- pl,](E,,+pl_,) I

0.3333 1.6 2.4 0.16 0.9067 2.24

[) 0.6 1.6 0.16 1.76 - 1.76

1.3333 1.6 3.4 0.16 0.9067 2.24

1.3333 1.6 2.4 0.76 -0.6933 0.64

0 1.6 2.4 0.16 1.24 2.24

1.3333 0 0 0 - 1.3333 I

sign (I?)

I _ _ 0 4 2

(I I 2 0 _

2 2 I 0 4 2

v v 1 6 4

0 v _ 0 3 2

2 0 0 0 - _ 1

sign ' (I_)

1 I 1 0 --2 1

0 I 1 0 I 1

1 I 1 0 - 2 --1

I 1 l I - 3

0 1 1 0 - I I

1 0 0 0 I 0

sign (E)=

0 I I 0 2 1

0 0 - I 0 1 1

1 - I 0 0 2 1

I - 1 1 0 3 2

0 - 1 - 1 0 2 1

I 0 0 0 I I

Jl [ind(sign _ (E))ind(sign (1_))] =

I 1 0 0 - I - 1

0 1 0 0 0 - I

I 1 0 - 1 - I 0

I I 1 - I - I - I

0 1 0 0 - I - I

I 0 0 I (i 0

l:rom (13), wc obtain

PNntcd III (ilcnt Brlhilil 1077
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M 'E,M=

M

M I,'4,,M= [_110
L

[,'&, = [#',1_1' = o

I 0 0

0 2 1

0 0 2

0 0 0

0 0 0

0 0 0

,o]+

1 I I

--I I b

I 0 0 0

I o o o

I o o o

+

I o o o

I 00 1

I o o o

2 0 I _'

0 0 --IJ "

Based on (14) and the fact that/_j is in the Jordan form, one has

I:°i], ,_[,o01V= L,. E, = ErE, = 0 _i, = 7_,= flE_ _ = 0 0.5 -0.25
0 0 0 0 0.5

_=B,=E,'_,= 0.25 o.75 , /_,=B,=B_= 0 .
0.5 0.5 -I

Since rank (E'O = q = 1, the singular system has one impt, lsivc mode by means of

(I 5) associated with (14).

Nov,'. we compute the preliminary feedback gain Kt for eliminating the impulsive
mode of the singular system. As ttl = I, k I = O3_ I. In addition, since u_ = 2 and

its corresponding,lordan block is not a null matrix, one has

k.,+ t = k_ = L6(b_,,,;,:)_) = L6(t_,, = 1

k;,,.;,_ = k3 = 03,1.

Thus we get the preliminary feedback gain

K/ = I 0

and the control law

I°u(t) = -[02.3- K,]._(t)+v(t) = - 0

0 0 0 1 O_

] ._'(t) + v(t).
0 0 0 -1 0

Jotlrnal of the I rankiill hlslilulc
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('omputing the closed-loop singular systcm with respect to the preliminary feedback

gain, yields

I I_ I 0 ]
0 I Er

'll I --DK, ]
A _ = + =

I /_ D,x,j

I 0 [) I 0 0 0-

0 1 0 I 0 0 0

[) 0 1 l (i 0 0

+

0 0 0 t 0 0 0

0 0 0 I 0 0 I

0 0 0 I 0 0 0

I [) 0 t 0 - 1 0

0 0.5 0.25 i 0 -1 0

0 (i 0.5

0 0 0

0 0 0

(I 0 0

1 0

0.25 O.75

(1.5 O.5

I 0 [) 0

+

1 - 2 0

0 1 0

0 2 I

2 0

0 0

1 - I

_l¥C tlan_,l'ornl the regular fornl _/':'_. ,lz_ into a standard one once a2ain< with

]. z ] _iild Jl = I, ;and tlS,O the extended matrix sign function 1o find a similarity

[rtlnsl])l'nlatioll matrix iT/of l_'_

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 I 1 0

0 0 0 0.5 0 I

0 0 0 1 0 0

Lot .'_-(t) = fflX(t) and compute (24), lhcn one has

"Viii _10. N_ 6. pp, 1t1[_ ll)_(_, It# l)

l_rlnN'd ill (ire;It Brhalil
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,."('11(TE_+q.,I._ ) _.k.'_,'$71= +

O I O_

I 0 0 - 0.3333 ] 0 0-

0 0.6667 -0.1111 -0.2222 r 0 0

() 0 0.6667

0 0 0

(} 0 0

0 (} 0

o I o o

0.6667 I 0 0

+

o I o o

o I o o

[l,,-"'tl (;'E_+,l.4t) 'E_._I]=

(14-,'/_.,_) ] O

+

I

o I '11_

I 0 0 -0.6667 I

0 0.3333 0.2222 0.4444 I

0 0 0.3333 0 p

0 0 0 0.3333 I

+

0 0 0 0 I

0 0 0 0 p

0 o

0 0

0 0

0 0

_Q '(TEI,+qA,_) 'B

0.3333 0.6667

-0.3333 -0.1111

0.3333 0.3333

0.3333 -0.3333

-1 -I

0.5 0.5

1080 ,........._,,i_h_.,_,,,,kli,,,........_.
Pq[9;llllOll l)rc_ [ td
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Thercl\)rc. wc =,,et the reduced-order lCfftllar_ subsyslCnl and tile nond\namic, sub-

system in {25)and (26), rcspccd_cl 5

I
.{. (1) (/_,1 ;'l_)._,(l)+l?,_ i/_,_1.(1)

Jl

fi,j.L(t) + _,_r(t)

I 0 0 0.5

0 0.5 0.25 0.5

= 0 0 O.5 0

0 0 0 0.5

£(t) +

0.5 0.5

--0.25 -0.25

0.5 O.5

0.5 0.5

r(t)

_llld

_t{l) _ I[]_/'/'(l) = I--]0.5 0.5111"(I)"

(il Model cmu'ersims

The discrete-time model cor,'esponding to (25) and (26) is in (27) and (28),

respectively, where 7" = 0. I s.

C_, = exp (.]'_ T) =

1.1052 0 0 -0.0539

0 1.0513 0.0263 -0.0526

0 0 1.0513 0

0 0 0 1.0513

0.0513 {).1)539

0.0276 -0.0250

0.0513 0.0513

0.0513 - 0.0513

ftr=qB_x = -0.5 0.5 "

Thus "w_2lind the discrete-time singular s,yslclll corresponding to the continuous-

'Lime singular s_slem E,.{d(t) = (.'L " ]_,Kp}I\d(l)_-l_,l'(k T} from (34) as follows

14 'i O 1
(M t _ ) + (M l ":_ )

O I O:

I

0

1
I

1

0

I

"7

i -0.50 -0.50.5_

1 0 0 0 0

1 0.5 0 --0.5 0.5

1 1.5 I - 0.5 0.5

I --0.5 0 0.5 0.5

0 I 0 0 I

..,i.._..Ii.,_ ...... ..._,,,, 1081
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1.1052 0.0513 0.0532 0.1584-

0 1.0513 0.0788 0.0788

0.1052 0.0513 0.0532 0.1584

0.1052 0.0513 0.0532 0.1584

0 0.0513 1.11)45 0.1045

0.1052 0 0 1.1052

--0.1321

-- 0.0536

0.8679

--0.1834

0.0782

0. 1052

0.4468

-0.0788

-0.5532

- O.5532

0.3955

-1

- 0.0263

- 0.0263

-0.0263

t .0250

- 0.0263

0

0.3942 -

0.0263

1.3942

1.2916

0.448 I

--0.8948

The continuous-tn_ne singular system has four finite eigenvalues, II,0.5, 0.5,0.5],
and two infinite nondynamic eigenvalues. Its corresponding discrete-time model

has four finite eigenvalues, _1.1052, 1.0513, 1.0513, 1.0513}, and two infinite non-

dynamic eigenvalues.

(ii) D_qital redeson
Set the desired control law ik)r the slow subsystem as described in (35) where

[7.9819-23.9457-13.81905.8507 1K,._= 28.3801 -I.1403 -21.8009 -6.8643 " E,,= /4.

The eigenvalues of the closed-loop continuous-time singular system E,..{.(I) =

(A, - B_K)x{ t) + B,.r(t), denoted by a(sE_ - A,. + B,K) where K = {[O___ 3, K,] + [K_,_,

O::, 2]M t}(MV) _, include two infinite nondynamic eigenvalues and four finite

eigenvalues _t-3,-2.5,-2.5,-2.51 which lie within the specified region with
h = 1 in Fig. i. Therefore, one has the equivalent discrete-time model in (41) with

1. 1052 0 0 0.0539]
/

0 1.0513 -0.0263 0.0526|

(7,t = exp (,4v, T) = 0 0 |

J0 1.0513

0 1.0513

0 0

0.0513 0.0539

- 0.0276 0.0250

0.0513 0.0513

0.0513 - 0.0513

Jl*tllrldl of the J i'illlk]ill hl'qJikH_:
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Hence/,,\_ and E,_ concerning the digital control law in (42) are

K,, = _(l:+ _KJTd) LK_(14+Gd) =

21.3588 0.7265 -15.9422 -5.5982

[0.7516 -0.0054]E,k = (l_,+_K_J)a) _E_,- --0.0045 - 0.7163J

Thus the state feedback gains Kp and K for continuous-time singular system and

the redesigned sampled-data system, respectively, are

& = [O_,, _,£f] tMF)

=[_ 1 0 0 -1 0]- I 0 0 1 0

K = [Kd, O:. :](M_'_,lTI) '

[6.1532 18.4535 -13.5897 --10.2956 17.7322

L21.3588 0.7265 --6.3246 - 15.9422 0.9081

The eigcnvalues of the equivalent discrete-time singular system

(M _":Q)
14 I O 1

+ (m _",gt)

0 I O:

= (m _,#) +
O

23.88531
22.2668J"

_.vd(kT+ T)

o)(,,'_/I"',A_'_¢)'-- K x,_(kT)

I_, /?

+ (M l"lt/) /t, Edr(k T)

cigenvalues and four finite eigenvalues [0.7408,include two intinite nondynamic

0.7788, 0.7788, 0.77881 which lie within the specified region with h = 1 in Fig.

2. The simulation results with respect 1,o controls arc shown in Figs 4 and 5.

respectively.

VII. Conclu,_'ions

The model conversion and digital redesign problems for a regular system have

been extended to the case of a singular system which is controllable at finite and

impulsive modes. If the singular system does not have any impulsive mode, then

we can easily utilize the good characteristics of the standard pair and apply the

extended matrix sign function to decompose the singular system into a reduced-

%oL 3311. No 6, pp. 1063 1086, ITS03
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1
-- continuous-time system

g
e-.
o

01   re  ioedd.itls,stem
-0.5

-1.5

-2

0

z6(t} ,_dO

zT(t) _d_(t}

=,(l) zjl(t)

• ,(t} _d,O)

05 1 1.5 2 2.5 3 time (sou.)

|:l_. 4a. Simulation results.

e.,

r_

o.2!

O.15L

I

0"11

0.05

0

-0.05

!
I

-o._ _-

L
-0.15

[
I i

-0.2 1 ;

0

i ,,\ I

; -- continuous-time system i
q

. , , _ redesigned digital system j

\\ __
G

•6(/} )_lll(t)

•_(t) ,_dt)

• ,(t) .,.(t)

• ,(t) _(l)

0.5 1 1.5 2 2.5 3 time (sou.)

Pl(/. 4b. A p;u'l of Fig. 4a.

order regular subsystem and a nondynamic subsystem. Otherwise, we must apply

a preliminary feedback control law, which is simpler and more etticienl than that

ol'('obb's, to the singt, lar system in order to eliminate all impulsive modes. Finally,

we apply the given results to the reduced-order regular subsystem, and then by
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o 0.5 t 1.5 2 2.5 3 time (see.)

Flc;. 5. ('onm_l signals.

relating the reduced-order regular subs},stcnl arc transformed back to those of the

original coordinates.
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